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ABSTRACT: Most of the recent studies aim in the developments of new elements in finite element analysis 
This paper focuses on development of new quadrature for the 4- node quadrilateral element for the purpose 
evaluation of element stiffness matrix. The corner point Quadrature is a mimics of Gauss numerical 
integration scheme. This integration scheme consists of 5 sampling points and weights where four sampling 
points are at the corner and one at the Centre of the element. Accuracy of results, Convergence of the results 
and stability of values been tested using standard benchmarked problems defined by various research 
studies.  
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I. INTRODUCTION 

For the computation of complex problems, Finite 
Element Analysis (FEA) is an approximation approach 
used in engineering.  Solving problems in FEA needs 
more computational efforts because of handling large 
varying data. Sampling points and weights plays a key 
role in the calculation of element stiffness matrix 
because it needs to deal with large varying data with 
more accuracy. For evaluation of integrals over the finite 
elements, numerical integration is considered to be the 
important method. In general, for finite elements, the 
load vectors and expressions for the integration of 
element stiffness matrices cannot be done analytically 
way. Instead of doing analytically the element stiffness 
and load vectors matrices are evaluated by using some 
numerical integration rule. For estimation of element 
matrices and vectors usually we use numerical 
integration methods for different types of finite elements. 
Many researchers had done study on finding new 
elements in finite element analysis. The most basic 
quadrilateral element in finite element method is Q4. 
The studies had shown that the performance of Q4 
element was fond to be poor while computing in bending 
problems and distorted meshes. Wilson et al., (1973) 
had proposed a new non-conforming element Q6 with 
additional internal degrees of freedom [25]. Taylor 
(1976) has proposed new element QM6 for passing the 
patch test [24]. As a modification of Q6. developed 
another element Nq6 using additional linear terms [6]. 
Various schemes of integration techniques have made 
significant role in the development of finite element 
methods [11, 27]. Recently it is found from various 
studies deals with reduced integration schemes which 
are more frequently been used with a combination of 
time domain in application of explicit integration and 

stabilization methods. This lead to improvement in the 
computational efficiency while simulating demanding 
models computationally [1, 2, 15] 
Introduction of drilling degrees of freedom were 
introduced in many literature studies for the purpose of 
obtaining better results and performance [3, 5, 10, 17, 
22] those elements the final outcome is found to be rank 
deficiency while solving using reduced integration 
schemes. Studies shown that there is difficulty of 
"trapezoidal locking" in the 4-node quadrilateral element 
when each node remains with two degrees of freedom. 
This will be based on the element which passes the 
strong patch test, the studies shown that MacNeal’s 
slender beam will be shear locking under the trapezoidal 
grid. However, some researchers used special 
treatments to eliminate the trapezoidal locking. Using 
the method of selective scaling technique has 
developed an element SPS [23].  
Recently studies were done on unsymmetrical element 
TQ4 developed by [26] and US-ATFQ4  proposed by 
[4]. The elements stiffness matrices for those elements 
are unsymmetrical. Various development in new 
quadrature for the three dimensional elements has been 
developed by various authors [13, 21]. An alternate 
adjustment in patch test has been done to improve the 
convergence of results by [12]. A simple and robust 
method for the development of quadrature’s for 
quadrilateral element was done by [20]. This research 
papers deals with a development of new quadrature on 
par with Gauss quadrature. In order compute the 
element stiffness matrix with large varying data the new 
quadrature element Corner method is designed with 
four sampling points at the corners of the element and 
one point at the center of the element. 
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II. FORMULATION OF ELEMENT STIFFNESS 
MATRIX FOR THE TRIANGULAR ELEMENTS 

The computation of element stiffness matrix need to 
deal with handling large number of varying data. The 
standard element stiffness matrix is derived as follows  
Strain energy (U) can be defined as    
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A function of Young’s modulus (E) and Poisson’s ratio 
(µ) will for the material matrix (D). Eqn. 4 shows the 
various function for which are used for geometry 
defining field functions (x and y), the material functions 
(E and µ) and variable defining displacement function (u 
and v) are described. 
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Mapping of elements should be done for the evaluation 
of matrix provided Cartesian coordinates should be only 
one set for each set of corresponding non-dimensional 
coordinates. For the process of mapping of elements, 
the following matrix is used (eqn. 5) which in turn known 
as Jacobian matrix. 
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The general strain equation is defined in eqn. 6 
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The plain stress and Plane strain were defined to a 
matrix called as strain displacement matrix [B] which is 
shown in eq. 8 
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Where nodes per element is defined as “n” 
 

[ ]





















=

2221

1211

2221

1211

2

00

00

00

00

JIJI

JIJI

JIJI

JIJI

B

[ ]
















=

0110

1000

0001

1B

  

      





























∂

∂

∂

∂

∂

∂
∂

∂

∂

∂

∂

∂
∂

∂

∂

∂

∂

∂
∂

∂

∂

∂

∂

∂

=

m

N

m

N

m

N
l

N

l

N

l

N
m

N

m

N

m

N
l

N

l

N

l

N

B

n

n

n

n

0..00

0..00

0..00

0..00

21

21

21

21

3

 
 (10)  

The element stiffness matrix for quadrilateral element 
can be written as 
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Suitable quadrature can be defined following equation. 
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Here P and Q represents the sampling points number 
along the l, m and n directions and Wi, Wj represents 
the sampling weights for the respective Quadrature 

III. FORMULATION OF ELEMENT CORNER METHOD 

The aim of this research study is to find an alternate 
sampling point to 4-node quadrilateral element. The 
current study has used standard Gauss quadrature for 
the evaluation of stiffness matrix. Undetermined 
coefficients method is used for deriving new sampling 
points for the 4- node quadrilateral element. The main 
assumption which made here is the typical quadrilateral 
element is considered with 4 sampling points at the 
corners and one at the centre point. Fig.1 (a) and 1(b) 
shows the Gaussian quadrature methods and Fig. 1(c) – 
1(e) shows the new set of sampling points locations. 
There are 5 sampling pointss, of which four are located 
at the corners of a quadrilateral element at a distance of 
(±a, ±a), each having a weight (Wa). The remaining 
point is located on the center of the axes each having a 
weight (Wb).  

 

{ }





























∂

∂
+

∂

∂
∂

∂
∂

∂

=
















=

x

v

y

u

y

v
x

u

xy

y

x

λ

ε

ε

ε

{ } [ ]  
T

vuB *=ε



Johnson  et al.,      
 
International Journal on Emerging Technologies   11(4): 250-256(2020)                        252 

 

Fig. 1 (a) Gauss Two-point quadrature, (b) Gauss 
Three-point quadrature, (c)  Element Corner method 

with location 0.5, (d) Element Corner method with 
location 0.5, and  (e) Element Corner method with 

location 1. 

The following polynomial is chosen for the deriving the 
new sampling locations at the corner point of 
quadrilateral  
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Integrating equation (13) will get the following  
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 performing the numerical integration on equation (14) 
will provide 
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The function Φ  can be evaluated by using the 
following numerical form 
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Where n is considered as number of sampling points                         
      
Again substituting equation (13) in equation (16) we get 
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There can be only two sampling weights Wa and Wb on 
the basis of the location of sampling points. The 

coordinates and the weights are substituted 
simultaneously for each sampling integration points and 
on simplifying we end up with a set of simultaneous 
equations which are shown in equation 18. 
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On substituting the points and solving the (19) the set of 
points are found and shown in Table 1. For two 
dimensional quadrilateral elements the reduced 
integration will be 
For two dimensional quadrilateral elements, the reduced 
integration will be 
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Table 1: Quadrilateral element with new set of 
integration points. 

Integration 
point 

location 

Weighting 
function 
(at a =1) 

Weighting 
function 

(at a =0.75) 

Weighting 
function (at 

a =0.5) 

Corner 
points 

 
0.3333 0.592592 1.3333 

Center 
points 

 
2.6667 

1.629632 
 

-1.33332 
 

Numerical Examples 
In this section Well defined standard problem defined by 
various authors are taken as reference problems to 
study the results by the new proposed element corner 
method for the 4 node quadrilateral element. 
Convergence of results plays a major role in finite 
element analysis. 
Example 1. Macneal Slender Beam 
This problem is for testing the shear locking and 
trapezoidal locking. There will be three meshes are 
considered (Regular Quadrilateral Mesh, Parallelogram 
Mesh, Trapezoidal Mesh). Accuracy of results is an 
important factor for a quadrature thus irregularity in 
meshes should not affect the results had defined this 
problem [19]. There will three meshes as shown in Fig. 
2 (a), (b) and (c). The Poisson’s ratio is 0.3, young’s 
modulus for the problem is 100000 and the thickness 
will be 0.2 units. The reference for the evaluation of 
results is taken at the end point A. Table shows the 
normalized displacement results at point A using the 
Gauss numerical integration method and element 
Corner method. 

 

Fig 2. (a) Regular Mesh, (b) Parallelogram Mesh and (c) 
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The results show that on comparing other elements the 
proposed quadrature scheme results are on par with 
normalized displacement results of others methods and 
elements. 
Example 2: Cooke’s Skew Beam Problem 
The example problem is defined by [8, 26]. This problem 
tested by improving the number of meshes thus it will 
lead to analyzing the convergence of displacement 
results. This example is being used for various 
researchers to study the anti-distortion performance. 
The Cooke’s skew problem is shown in Fig. 3. The 
convergence behaviour of new proposed method is 
found to comparable with other elements. The results 
are tabulated in Table 3 and the convergence graph is 
shown in Fig. 4. This problem is considered to test the 
sensitivity of distortion of meshes. Distortion test was 
recommended by [7]. 

Example 3: Distortion Test 
The problem outlines a beam discretized in two 
elements and the distortion of mesh is done by varying 
a parameter shew distance “e”. Change of skew 
distance will have led to the distortion in meshes. Fig. 5 
shows the distortion test problem.  
 

Trapezoidal Mesh. 

 

Fig. 3. Cooke’s Skew Problem. 

 

Fig. 4. Convergence plot of Cooke’s skew problem. 

 
Table 2: Normalized displacement results of Macneal slender beam problem. 

Quadrature Mesh (a) Mesh(b) Mesh(c) 

Q4 0.093 0.034 0.027 

Q6
 

0.994 0.678 0.106 

Qm6
 

0.993 0.623 0.044 

NQ6
 

0.994 0.633 0.052 

P-S
 

0.993 0.798 0.221 

PEAS7
 

0.982 0.795 0.217 

QC6N
 

0.993 1.000 0.987 

AQGβ6-I(β=0)
 

0.993 0.994 0.994 

US-ATFQ4
 

0.993 0.992 0.992 

ESQ5α-M
 

0.993 0.973 0.967 

rQm6(-2)
 

0.994 0.995 0.994 

Nq6(-2)
 

0.994 0.995 0.995 

iQ8 0.994 0.995 0.995 

Gauss 2X2 1.000 1.0000 0.9991 

ECM1 1.0001 0.9979 0.9949 

ECM0.75 1.000 0.9993 0.9976 

ECM0.5 1.0001 1.0003 0.9996 

Gauss 3X3 0.9999 0.9998 0.9987 

Table 3: Normalized displacement results. 

Element/ Method 2 × 2 4 × 4 8 × 8 16 × 16 32 × 32 

Gauss 2 × 2 25.79299 24.283 23.4579 23.02239 22.8016 

ECM1 25.4765 24.237 23.4546 23.02286 22.8024 

ECM0.75 25.6866 24.267 23.45649 23.02233 22.8016 

ECM0.5 25.8328 24.290 23.45908 23.02304 22.8022 

Gauss 3×3 25.709 24.2687 23.45449 23.01998 22.7993 

Q4 11.85 18.30 22.08 23.43 23.82 

Q6
 

22.94 23.48 23.81 23.91 23.95 

Qm6
 

21.05 23.02    

NQ6
 

21.05 23.02 23.69 23.88 23.94 

P-S
 

21.13 23.02  23.88  

QE2 21.35 23.04  23.88  

QC6N
 

23.78 23.72 23.87 23.93  

AQGβ6-I(β=0)
 

23.07 23.68 23.87 23.93  

US-ATFQ4
 

22.76 23.43 23.79 23.91  

ESQ5α-M
 

22.00 23.21 23.66 23.85 23.92 

rQm6(-2)
 

30.55 25.37 24.28 24.03 23.98 

rNQ6(-2)
 

29.78 25.32 24.28 24.03 23.98 

iQ8 26.13 24.33 24.03 23.98 23.97 

 



Johnson  et al.,      
 
International Journal on Emerging Technologies   11(4): 251-257(2020)                           254 

 
Fig. 5. Distortion test on beams. 

Table 4: Normalized Displacement Results of distortion test. 

Element / Method e=0.5 e=1 e=2 e=3 e=4 

2 × 2 100.0002 99.9996 100 99.7673 98.9325 

ECM1 99.4394 98.2254 93.9983 84.734 69.3042 

ECM0.75 99.8044 99.3894 97.9811 94.8177 89.2645 

ECM0.5 100.0738 100.2229 100.7253 101.5175 102.3288 

3 × 3 99.9171 99.7539 98.9307 96.4736 91.1123 

Q6
 

93.21 86.90 92.67 102.4 110.5 

Qm6
 

 67.3 62.4 65.7 66.9 

NQ6
 

83.91 67.29 62.42 65.66 66.95 

iQ8 100 100 100 100 100 

rQm6(-2)
 

100.1 99.91 97.32 91.53 83.34 

rNQ6(-2)
 

100.1 100.2 99.89 99.85 101.0 

AQGβ6-I(β=0)
 

100 100 100 100 100 

US-ATFQ4
 

100 100 100 100 100 

ESQ5α-M
 

99.99 99.97 99.88 99.82 99.79 

P-S
 

 67.5 63.1 67.2 70.0 

ECQ4  87 93.1 103.1 111.4 

HSF-Q4α-7β 99.93 99.47 95.95 87.14 71.87 

The normalized displacement results of distortion test 
problem are tabulated in Table 4.  

Example 4: Eigen Value Analysis 
Eigen value is used to determine the rank deficiency of 
element stiffness matrix thus it is necessary to analyze 
the Eigen value [16]. Eigen value analysis is done to 
study the stability of the quadrature. A single standard 
quadrilateral element is chosen with unit length. The 
element stiffness matrix is calculated and the Eigen 
values are determined. Figure 6 shows standard 4-node 
quadrilateral element with unit length and Table 5 shows 
the Eigen value analysis results. From Table 5 we can 
infer that the proposed quadrature’s are found to stable 
and which can be used for the evaluation of large 
fluctuating element stiffness matrix. 

 

Fig. 6. Unit quadrilateral element. 

Example 5 CPU Time Comparison 
Computation of stiffness matrix will lead to deal with 
large fluctuating data thus computational time needs to 
be on par with existing quadrature methods. The code 
for the computational analysis is written on MATLAB [9, 
14]. The CPU time comparison was done on a 4-node 
quadrilateral element with the element corner approach 
and gauss sampling approach using computer of 
configuration Intel(R), i3 2.4 GHz, 4 GB RAM.  

Table 5: Eigen value analysis for the computation of 
element stiffness matrix using various integration 

schemes. 

λ 2×2 ECM1 ECM0.75 ECM0.5 3×3 

1 0 0 1.6 1.6 1.6002 

2 0 0 0 0 0 

3 0 0 0.8 0.8 0.8001 

4 0.5333 0.5333 0.5333 0.5333 0.5334 

5 0.5333 0.5333 0.8 0.8 0.8001 

6 0.8 0.8 0.5333 0.5333 0.5334 

7 0.8 0.8 0 0 0 

8 1.6 1.5999 0 0 0 

Table 6: CPU computational time analysis in 
seconds. 

 
1000 10000 25000 50000 100000 

2×2 
0.66966

5 
3.50290

2 
6.46176

8 
11.6581

4 
21.3700

8 

ECM1 
0.62962

3 
4.23048

6 
7.53503

5 
14.2046

6 
24.6222

8 

ECM0.7
5 

0.67593
1 

4.16779
4 

7.39426
8 

13.6063
2 

25.3281
7 

ECM0.5 
0.68726

9 
4.36531

1 
7.59341

2 
13.2737

1 
25.4918 

 

Fig. 7. CPU computational time plot of various quadrature 
schemes. 
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The coded program was run for 100,000 time in 
MATLAB to study the CPU time using different 
quadrature methods. The results are shown in following 
Table 6 and Fig. 7.  
Example 6 patch test 
Patch test is considered to be one of the important test 
in finite element analysis which deals with errors in 
stiffness matrix calculation. The patch test is conducted 
in distorted elements [6]. The problem chosen for patch 
test is shown in Fig. 8.  A linear elastic material with 
Poisson’s ratio (ϑ) of 0.25 and Young’s modulus (E) of 
1000000 is selected for the test. The patch test is 
carried out to determine the error in stiffness matrix on 
comparison with standard matrix calculated using 
standard quadrature methods here it is considered as 
Gauss quadrature. Equation 20 shows the stiffness 
matrix error for the quadrilateral elements. Stiffness 

matrix error ( ) is given by 

             (20) 
Table 7 shows the stiffness matrix error of quadrilateral 
elements on comparing with gauss quadrature methods. 
The results show that on comparing with Gauss 
integration scheme, the integration points of element 
corner method are found to be negligible so it can be 
inferred that it had passed patch test. 

 

Fig. 8. Patch test with distorted elements. 

Table 7: Stiffness Matrix Error. 

ECM1 0.0043 

ECM0.75 0.0013 

ECM0.5 4.31E-04 

Example 7: Convergence test 
Convergence test for quadrilateral elements is 
conducted by increasing number of elements. Here on 
increasing the number of elements the distortion of 
elements getting reduced and converges to a value. Fig. 
9 shows the test problem for convergence test. The 
displacement error norm is calculate using the equation 
22. 

∑
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The displacement results are shown in table 8 and the 
results are plotted n Fig. 10. It can be seen that after 
increasing number of elements the results are getting 
converges to a value.  

 

Fig. 9. Convergence test problem. 

Table 8: Convergence of displacement results. 

Quadrature 
Number of Elements 

5 20 80 320 1280 

2 × 2 
0.0234

72 
0.00327

2 
0.00037

5 
0.00012 

0.00010
1 

ECM1 
0.0480

97 
0.00655

4 
0.00043

8 
9.66E-

05 
0.00013

1 

ECM0.75 
0.0010

24 
8.98E-

05 
8.51E-

05 
9.96E-

05 
0.0001 

ECM0.5 
0.0323

45 
0.00449

8 
0.00050

5 
0.00015

2 
0.00012

7 

 

Fig. 10. Convergence of displacement results in 
graphical mode. 

IV. DISCUSSION AND CONCLUSION 

The proposed Element Corner Method for the 4 node 
quadrilateral element is been tested and compared with 
Gauss Numerical quadrature scheme. In view of the 
results, it is inferred that the proposed scheme is 
accurate and efficient. Because of large varying data 
while computing element stiffness matrix and post 
processing calculations will lead doors for complex 
calculations. Formulation of element corner was found 
simple. The results of the proposed schemes were 
compared with results of benchmarked problems 
defined by various authors. The following conclusions 
were inferred from the research study. 

• The element corner method doesn’t show any shear 
and trapezoidal locking problems and also the 
normalized displacement results were found to be on 
par with other standard results 

• In the case of Cooke’s skew problem, the convergence 
of results was happened on increasing the number of 
elements. The results shown that on increase of number 
of elements the results get converged to a value. 

• The normalized displacement results of Cooke’s 
problem show that the normalized displacement results 
are comparable with the existing gauss numerical 
scheme. 
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The sensitivity of meshes for the new quadrature was 
tested using distortion test. The Variation of skew 
parameter ‘e’ will lead for inaccurate results but in the 
proposed quadrature scheme the results are on par with 
the gauss quadrature. 
The results of patch test were significantly inferred that 
the new scheme can handle complex problems and 
error in stiffness matrix were found to be too less thus 
the Element Corner method can handle distorted 
elements. 
Based on the results we can conclude that the proposed 
Element corner method is found to be simple and 
accurate which can be used for evaluating the element 
stiffness matrix infinite element analysis. 
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